PULSA AQUÍ
martes, 15 de octubre de 2013
UNIDAD No. 4: FUNDAMENTOS DE ALGEBRA
sábado, 12 de octubre de 2013
UNIDAD No. 3: NUMEROS REALES
NUMEROS REALES
Hola estimados estudiantes, este es un documento pdf donde se encuentra la teoria de conjuntos de una forma clara y resumida, revisarlo y estudiarlo, no sin antes dar los créditos necesarios a sus autores
PULSA AQUI
jueves, 10 de octubre de 2013
UNIDAD No. 2: TEORIA DE CONJUNTOS
TEORIA DE CONJUNTOS
Hola estimados estudiantes, este es un documento pdf donde se encuentra la teoria de conjuntos de una forma clara y resumida, revisarlo y estudiarlo, no sin antes dar los créditos necesarios a sus autores
PULSA AQUI
martes, 24 de septiembre de 2013
EL HOMBRE QUE CALCULABA CAPITULOS: 1-6
EL HOMBRE QUE CALCULABA
CAPITULOS DEL 1 AL 6
CAPÍTULO I
En el cual encuentro, durante una excursión, un viajero singular. Qué hacía el viajero y cuáles eran las palabras que pronunciaba.
Cierta vez volvía, al paso lento de mi camello, por el camino de Bagdad, de una excursión a la famosa ciudad de Samarra, en las márgenes del Tigris, cuando vi, sentado en una piedra, a un viajero modestamente vestido, que parecía reposar de las fatigas de algún viaje.
- Disponíame a dirigir al desconocido el “zalam”1 trivial de los caminantes, cuando con gran sorpresa le vi levantarse y pronunciar lentamente:
- Un millón cuatrocientos veintitrés mil, setecientos cuarenta y cinco. Sentóse enseguida y quedó en silencio, la cabeza apoyada en las manos, como si estuviera absorto en profunda meditación. Me paré a corta distancia y me puse a observarle como lo habría hecho frente a un monumento histórico de tiempos legendarios. Momentos después se levantó, nuevamente, el hombre, y, con voz clara y pausada, enunció otro número igualmente fabuloso:
- Dos millones, trescientos veintiún mil, ochocientos sesenta y seis. Y así, varias veces, el extravagante viajero, puesto de pie, decía un número de varios millones, sentándose en seguida en la tosca piedra del camino. Sin saber refrenar la curiosidad que me aguijoneaba, me aproximé al desconocido, y después de saludarlo en nombre de Alah (con Él en la oración y en la gloria)2, le pregunté el significado de aquellos números que sólo podrían figurar en proporciones gigantescas.
¡Forastero! – respondió el “Hombre que calculaba”-, no censuro la curiosidad que te llevó a perturbar la marcha de mis cálculos y la serenidad de mis pensamientos. Y, ya que supiste ser delicado al hablar y al pedir, voy a satisfacer tu deseo. Para eso necesito, sin embargo, contarte la historia de mi vida. Y narróme lo siguiente:
CAPÍTULO II
En el cual Beremís Samir, el “Hombre que calculaba”, cuenta la historia de su vida. Cómo fui informado de los prodigiosos cálculos que realizaba y por qué nos hicimos compañeros de viaje.
Me llamo Beremís Samir y nací en la pequeña aldea de Khoy, en Persia, a la sombra de la gran pirámide formada por el monte Ararat. Siendo muy joven todavía, me empleé como pastor al servicio de un rico señor de Khamat1.
Todos los días, al salir el Sol, llevaba el gran rebaño al campo, debiendo ponerlo al abrigo, al atardecer. Por temor de extraviar alguna oveja y ser por tal negligencia castigado, contábalas varias veces durante el día.
Fui, así, adquiriendo, poco a poco, tal habilidad para contar que, a veces, instantáneamente, calculaba sin error el rebaño entero. No contento con eso, pasé a ejercitarme contando además los pájaros cuando, en bandadas, volaban por el cielo. Volvíme habilísimo en ese arte. Al cabo de algunos meses –gracias a nuevos y constantes ejercicios-, contando hormigas y otros pequeños insectos, llegué a practicar la increíble proeza de contar todas las abejas de un enjambre. Esa hazaña de calculista nada valdría frente a las otras que más tarde practiqué. Mi generoso amo, que poseía, en dos o tres oasis distantes, grandes plantaciones de dátiles, informado de mis habilidades matemáticas, me encargó de dirigir su venta, contándolos yo uno por uno en los cachos. Trabajé asía al pie de los datileros cerca de diez años. Contento con las ganancias que obtuvo, mi bondadoso patrón acaba de concederme algunos meses de descanso, y por eso voy ahora a Bagdad pues deseo visitar a algunos parientes y admirar las bellas mezquitas y los suntuosos palacios de esa bella ciudad. Y para no perder el tiempo, me ejercito durante el viaje, contando los árboles que dan sombra a la región, las flores que la perfuman y los pájaros que vuelan en el cielo, entre las nubes.
Y señalando una vieja y grande higuera que se erguía a poca distancia, prosiguió:
Aquel árbol, por ejemplo, tiene doscientas ochenta y cuatro ramas. Sabiendo que cada rama tiene, término medio, trescientas cuarenta y siete hojas, se deduce fácilmente que aquel árbol tendrá un total de noventa y ocho mil quinientas cuarenta y ocho hojas. ¿Qué le parece, amigo?
- ¡Que maravilla! –exclamé atónito-. ¡Es increíble que un hombre pueda contar todos los gajos de un árbol, y las flores de un jardín! Tal habilidad puede proporcionar a cualquier persona un medio seguro de ganar envidiables riquezas.
- ¿Cómo es eso? –preguntó Beremís-, ¡Jamás pasó por mi imaginación que pudiera ganarse dinero contando los millones de hojas de los árboles o los enjambres de abejas! ¿Quién podría interesarse por el total de ramas de un árbol o por el número de pájaros que cruzan el cielo durante el día?
- Vuestra admirable habilidad – expliqué- podría ser empleada en veinte mil casos diferentes. En una gran capital como Constantinopla, o aún en Bagdad, seríais útil auxiliar para el Gobierno. Podríais calcular poblaciones, ejércitos y rebaños. Fácil os sería evaluar las riquezas del país, el valor de las colectas, los impuestos, las mercaderías y todos los recursos del Estado. Yo os aseguro –por las relaciones que mantengo, pues soy bagdalí2, que no os sería difícil obtener una posición destacada junto al glorioso califa Al-Motacen (nuestro amo y señor). Podríais, tal vez, ejercer el cargo de visir – tesorero o desempeñar las funciones de Finanzas musulmanas3.
- Si es así, joven – respondió el calculista- no dudo más, y os acompaño hacia Bagdad. Y sin más preámbulo, se acomodó como pudo encima de mi camello (único que teníamos), rumbo a la ciudad gloriosa.De ahí en adelante, ligados por ese encuentro casual en medio del agreste camino, nos hicimos compañeros y amigos inseparables. Beremís era de genio alegre y comunicativo. Joven aún –pues no tendría veintiséis años-, estaba dotado de gran inteligencia y notable aptitud para la ciencia de los números4.Formulaba, a veces, sobre los acontecimientos más banales de la vida, comparacionesinesperadas que denotaban gran agudeza de espíritu y verdadero talento matemático.
Beremís también sabía contar historias y narrar episodios que ilustraban sus conversaciones,de por sí atrayentes y curiosas. A veces pasábase varias horas, en hosco silencio, meditando sobre cálculos prodigiosos. En esas oportunidades me esforzaba por no perturbarlo, quedándome quieto, a fin de que pudiera hacer, con los recursos de su memoria privilegiada, nuevos descubrimientos en los misteriosos arcanos de la Matemática, ciencia que los árabes tanto cultivaron y engrandecieron.
CAPÍTULO III
Singular aventura acerca de 35 camellos que debían ser repartidos entre tres
árabes. Beremís Samir efectúa una división que parecía imposible,
conformando plenamente a los tres querellantes. La ganancia inesperada que
obtuvimos con la transacción.
Singular aventura acerca de 35 camellos que debían ser repartidos entre tres
árabes. Beremís Samir efectúa una división que parecía imposible,
conformando plenamente a los tres querellantes. La ganancia inesperada que
obtuvimos con la transacción.
Hacía pocas horas que viajábamos sin interrupción, cuando nos ocurrió una aventura digna de ser referida, en la cual mi compañero Beremís puso en práctica, con gran talento, sus habilidades de eximio algebrista.
Encontramos, cerca de una antigua posada medio abandonada, tres hombres que discutían acaloradamente al lado de un lote de camellos. Furiosos se gritaban improperios y deseaban plagas:
- ¡No puede ser!
- ¡Esto es un robo!
- ¡No acepto!
El inteligente Beremís trató de informarse de que se trataba.
- Somos hermanos –dijo el más viejo- y recibimos, como herencia, esos 35 camellos. Según la expresa voluntad de nuestro padre, debo yo recibir la mitad, mi hermano Hamed Namir una tercera parte, y Harim, el más joven, una novena parte. No sabemos sin embargo, como dividir de esa manera 35 camellos, y a cada división que uno propone protestan los otros dos, pues la mitad de 35 es 17 y medio. ¿Cómo hallar la tercera parte y la novena parte de 35, si tampoco son exactas las divisiones?
- Es muy simple –respondió el “Hombre que calculaba”-. Me encargaré de hacer con justicia esa división si me permitís que junte a los 35 camellos de la herencia, este hermoso animal que hasta aquí nos trajo en buena hora.
Traté en ese momento de intervenir en la conversación:
¡No puedo consentir semejante locura! ¿Cómo podríamos dar término a nuestro viaje si nos quedáramos sin nuestro camello?
- No te preocupes del resultado “bagdalí” –replicó en voz baja Beremís-. Se muy bien lo que estoy haciendo. Dame tu camello y verás, al fin, a que conclusión quiero llegar.
Fue tal la fe y la seguridad con que me habló, que no dudé más y le entregué mi hermoso “jamal”1, que inmediatamente juntó con los 35 camellos que allí estaban para ser repartidos entre los tres herederos.
- Voy, amigos míos –dijo dirigiéndose a los tres hermanos- a hacer una división exacta de los camellos, que ahora son 36.
Y volviéndose al más viejo de los hermanos, así le habló:
- Debías recibir, amigo mío, la mitad de 35, o sea 17 y medio. Recibirás en cambio la mitad de 36, o sea, 18. Nada tienes que reclamar, pues es bien claro que sales ganando con esta división.
Dirigiéndose al segundo heredero continuó:
- Tú, Hamed Namir, debías recibir un tercio de 35, o sea, 11 camellos y pico. Vas a recibir un tercio de 36, o sea 12. No podrás protestar, porque también es evidente que ganas en el cambio.
Y dijo, por fin, al más joven:
- A ti, joven Harim Namir, que según voluntad de tu padre debías recibir una novena parte de 35, o sea, 3 camellos y parte de otro, te daré una novena parte de 36, es decir, 4, y tu ganancia será también evidente, por lo cual sólo te resta agradecerme el resultado.
Luego continuó diciendo:
- Por esta ventajosa división que ha favorecido a todos vosotros, tocarán 18 camellos al primero, 12 al segundo y 4 al tercero, lo que da un resultado (18 + 12 + 4) de 34 camellos. De los 36 camellos sobran, por lo tanto, dos. Uno pertenece, como saben, a mi amigo el “bagdalí” y el otro me toca a mí, por derecho, y por haber resuelto a satisfacción de todos, el difícil problema de la herencia2.
- ¡Sois inteligente, extranjero! –exclamó el más viejo de los tres hermanos-. Aceptamos vuestro reparto en la seguridad de que fue hecho con justicia y equidad. El astuto beremís –el “Hombre que calculaba”- tomó luego posesión de uno de los más hermosos “jamales” del grupo y me dijo, entregándome por la rienda el animal que me pertenecía:
- Podrás ahora, amigo, continuar tu viaje en tu manso y seguro camello. Tengo ahora yo, uno solamente para mí.
Y continuamos nuestra jornada hacia Bagdad.
CAPÍTULO IV
En el cual encontramos un rico sheik, casi muerto de hambre en el desierto. La propuesta que nos hizo sobre los ocho panes que teníamos y como se resolvió, de manera imprevista, el pago con ocho monedas. Las tres divisiones de Beremís: la división simple, la división exacta y la división perfecta. Elogio que un ilustre visir dirigió al “Hombre que calculaba”.
Tres días después, nos aproximábamos a una pequeña aldea –llamada Lazakka- cuando encontramos, caído en el camino, a un pobre viajero herido.
Socorrímosle y de su labios oímos el relato de su aventura. Llamábase Salem Nasair, y era uno de los más ricos negociantes de Bagdad. Al regresar, pocos días antes, de Basora, con una gran caravana, fue atacado por una turba de persas, nómades del desierto. La caravana fue saqueada, pereciendo casi todos sus componentes a manos de los beduinos.
Sólo se había salvado él, que era el jefe, ocultándose en la arena, entre los cadáveres de sus
esclavos.
Al terminar el relato de sus desgracias, nos preguntó con voz angustiosa:
- ¿Tenéis, por casualidad, musulmanes, alguna cosa para comer? ¡Estoy casi muriéndome de
hambre!
- Tengo solamente tres panes –respondí.
- Yo traigo cinco –afirmó a mi lado el “Hombre que calculaba”.
- Pues bien –sugirió el sheik1-; juntemos esos panes y hagamos una sociedad única. Cuando lleguemos a Bagdad os prometo pagar con ocho monedas de oro el pan que coma.
Así hicimos, y al día siguiente, al caer la tarde, entramos en la célebre ciudad de Bagdad, la perla de Oriente. Al atravesar una hermosa plaza, nos enfrentamos con un gran cortejo. Al frente marchaba, en brioso alazán, el poderoso Ibraim Maluf, uno de los visires2 del califa en Bagdad.
Al ver el visir a sheik Salem Nasair en nuestra compañía, gritó, haciendo parar su poderosa escolta, y le preguntó:
Al ver el visir a sheik Salem Nasair en nuestra compañía, gritó, haciendo parar su poderosa escolta, y le preguntó:
- ¿Qué te ha pasado, amigo mío? ¿Por qué te veo llegar a Bagdad sucio y harapiento, en compañía de dos hombres que no conozco?
El desventurado sheik narró, minuciosamente, al poderoso ministro todo lo que le ocurriera en el camino, haciendo los mayores elogios respecto de nosotros.
- Paga sin pérdida de tiempo a esos dos forasteros, ordenó el visir.
Y sacando de su bolsa 8 monedas de oro las entregó a Salem Nasair, insistiendo:
- Quiero llevarte ahora mismo al palacio, pues el Comendador de los Creyentes desea, con seguridad, ser informado de esta nueva afrenta que lo beduinos practicaran, al matar a nuestros amigos saqueando caravanas dentro de nuestras fronteras.
- Voy a dejaros, amigos míos -; dijo Nasair- mas, antes deseo agradeceros el gran servicio que me habéis prestado. Y para cumplir la palabra, os pagaré el pan que tan generosamente me dierais.
Y dirigiéndose al “Hombre que calculaba” le dijo:
- Por tus cinco panes te daré cinco monedas.
Y volviéndose hacia mí, concluyó:
- Y a ti, “bagdalí”, te daré por los tres panes tres monedas.
Con gran sorpresa nuestra, el “Calculista” objetó, respetuosamente:
- ¡Perdón, oh sheik! La división hecha de ese modo será muy sencilla, mas no es matemáticamente exacta. Si yo di 5 panes, debo recibir 7 monedas; y mi compañero, “el Bagdad” que dio tres panes, solamente debe recibir una moneda.
- ¡Por el nombre de Mahoma!3 –dijo el visir Ibraim, interesado vivamente por el caso-. ¿Cómo justificas, extranjero, tan disparatada forma de pagar 8 panes con 8 monedas? Si contribuiste con 5 panes, ¿por qué exiges 7 monedas? Y si tu amigo contribuyó con 3 panes, ¿por qué afirmas que debe recibir únicamente una moneda?
El “Hombre que calculaba” se aproximó al poderoso ministro y así le habló:
- Voy a probaros que la división de las monedas hecha en la forma propuesta por mí, es más justa y más exacta. Cuando, durante el viaje, teníamos hambre, sacaba un pan de la caja y lo partía en tres trozos, uno para cada uno de nosotros. Todos los panes que eran 8, fueron divididos, pues, en la misma forma. Es evidente, por lo tanto, que si yo tenía 5 panes, di 15 pedazos; si mi compañero tenía 3 panes, dio 9 pedazos. Hubo, así, un total de 24 pedazos, de los cuales cada uno de nosotros comió 8. Ahora bien; si de mis 15 pedazos comí 8, di, en realidad, 7; y mi compañero, que tenía 9 pedazos, al comerse 8, solo dio 1. Los 7 que di yo y el que suministró “el bagdalí” formaron los 8 que comiera el sheik Salem Nasair. Por consiguiente, es justo que yo reciba 7 monedas y mi compañero 1.
El gran visir, después de hacer los mayores elogios al “Hombre que calculaba”, ordenó que le fueran entregadas las 7 monedas, pues a mí sólo me tocaba, por derecho, 1. La demostración lógica y perfecta presentada por el matemático no admitía duda.
- Esa división – replicó entonces el “Calculista”- es matemáticamente exacta, pero a los ojos de Dios no es perfecta.
Y tomando las ocho monedas en la mano las dividió en dos partes iguales. Dióme una de ellas y se guardó la otra.
- Ese hombre es extraordinario –exclamó el visir-. No aceptó la división propuesta de las ocho monedas en dos partes de 5 y 3, en la que salía favorecido; demostró tener derecho a 7 y su compañero a 1, acabando por dividir las 8 monedas en dos partes iguales, que repartió con su amigo.
Y añadió con entusiasmo:
- ¡Mac Alah!4 Ese joven, además de parecerme un sabio habilísimo en los cálculos de Aritmética, es bueno como amigo y generoso como compañero. Tómolo ahora mismo como secretario mío.
- Poderoso visir –le dijo el “Hombre que calculaba”-, veo que acabáis de hacer, con 29 palabras y un total de 145 letras, el mayor elogio que oí en mi vida, y yo, para agradecéroslo, me veo en la obligación de emplear 58 palabras en las cuales figuran nada menos que 290 letras, el doble de las vuestras5, precisamente. ¡Que Alah os bendiga y proteja!
Con estas palabras el “Hombre que calculaba” nos dejó a todos maravillados de su argucia e invencible talento de calculista.
CAPÍTULO V
En el cual nos dirigimos a una posada. Palabras calculadas por minuto.
Beremís resuelve un problema y determina la deuda de un joyero. Los
médicos del rey Artajerjes y la Aritmética.
Beremís resuelve un problema y determina la deuda de un joyero. Los
médicos del rey Artajerjes y la Aritmética.
Después de abandonar la compañía del sheik Nasair y del visir Maluf, nos encaminamos hacia una pequeña posad denominada “Patito Dorado”, en los alrededores de la Mezquita de Solimán.
Allí vendimos nuestros camellos a un chamir1 de mi confianza, que vivía cerca.
En el camino dije a Beremís:
En el camino dije a Beremís:
- Ya veis, amigo, tuve razón cuando afirmé que un calculista hábil hallaría con facilidad un buen empleo en Bagdad. No bien llegasteis, fuisteis invitado a ejercer el cargo de secretario de un visir. Ahora no necesitaréis más volver a la árida y triste aldea de Khoy.
- Aunque aquí prospere me contestó el “Calculista”-, aunque me enriquezca, volveré, con el tiempo a Persia, para ver mi tierra natal. Es ingrato aquel que olvida su patria y los amigos de la infancia., cuando tiene la felicidad de encontrar en su vida un oasis de prosperidad y fortuna. Y añadió:
- Viajamos juntos hasta este momento, exactamente ocho días. Durante ese tiempo, para aclarar dudas e indagar sobre cosas que me interesaban, pronuncié exactamente 414.720 palabras. Ahora bien; como en 8 días hay 11.520 minutos, saco en conclusión que durante nuestro viaje pronuncié, término medio, 36 palabras por minuto, o sea 2.160 por hora.
Estos números demuestran que hablé poco, fui discreto y no ocupé tu tiempo haciéndote escuchar discursos engorrosos y estériles. Un hombre taciturno, excesivamente callado, se vuelve desagradable, mas los que hablan sin parar irritan y fastidian a sus oyentes.
Debemos, pues, evitar las palabras inútiles, sin caer en el laconismo, que es incompatible con la delicadeza. Había una vez en Teherán, Persia, un viejo mercader que tenía tres hijos.
Un día el mercader los llamó y les dijo: “Aquel de vosotros que pase el día sin decir palabras inútiles recibirá un premio de 23 dracmas2”. Al caer la noche, los tres hijos se presentaron al anciano. El primero dijo: “Evité hoy, padre mío, todas las palabras inútiles. Espero, por tanto, merecer, según vuestra promesa, el premio estipulado, premio de 23 dracmas, como sin duda recordareis.” El segundo se aproximó al anciano, le besó las manos y se limitó a decir: “Buenas noches, padre mío.” El más joven, en fin, se aproximó al anciano y sin decir palabra extendió la mano para recibir el premio. El mercader, al observar la actitud de los tres muchachos, les habló así: “Fatigóme el primero, al llegar a mi presencia, con varias palabras inútiles. El tercero se mostró demasiado lacónico. El premio corresponde, pues, al segundo, que en su conversación fue discreto y sin afectación.”
Al terminar, Beremís me preguntó:
- ¿No te parece que el viejo mercader falló con justicia al juzgar a sus tres hijos?
No le respondí. Me pareció mejor no discutir el caso de los veintitrés dracmas con aquel hombre prodigioso que calculaba medidas y resolvía problemas, reduciendo todo a números.
No le respondí. Me pareció mejor no discutir el caso de los veintitrés dracmas con aquel hombre prodigioso que calculaba medidas y resolvía problemas, reduciendo todo a números.
Momentos después llegábamos al “Patito Dorado”.
El dueño de la posada se llamaba Salim y había sido empleado de mi padre. Al verme, gritó sonriente:
- ¡Alah sea contigo, mi señor!3 Aguardo tus órdenes ahora y siempre.
Díjele entonces que necesitaba una habitación para mí y para mi amigo Beremís Samir, el calculista, secretario del visir Maluf.
Díjele entonces que necesitaba una habitación para mí y para mi amigo Beremís Samir, el calculista, secretario del visir Maluf.
- ¿Ese hombre es un calculista? -exclamó el viejo Salim-. Sí así es, llegó en un momento oportuno para sacarme de un apuro. Acabo de tener una seria divergencia con un joyero.
Discutimos largo rato, y de nuestra discusión ha resultado, al final, un problema que no sabemos resolver. Al saber que un calculista había llegado a la posada, varias personas se aproximaron, curiosas. El vendedor de joyas fue llamado, y declaró estar interesadísimo en la resolución de ese problema.
- ¿Cuál es el origen de la duda? –preguntó Beremís.
El viejo Salim contestó:
El viejo Salim contestó:
- Ese hombre, y señaló al joyero, vino desde Siria a vender joyas en Bagdad, prometiéndome pagar por el hospedaje veinte dracmas si vendía las joyas por 100 dracmas, pagando 35 si las vendía por 200.
Proporción que planteó el mercader de joyas:
200 : 35 = 140 : x
200 : 35 = 140 : x
El valor de x es 24,5
Al cabo de varios días de ir y venir de aquí para allá, vendió todo en 140 dracmas.
¿Cuánto debe pagar, en consecuencia, ateniéndose a lo convenido, por concepto de hospedaje?
- Debo pagar apenas 24 dracmas y medio –replicó el mercader sirio-. Si vendiendo a 200 pagaría 35, vendiendo a 140 debo pagar 24 y medio.
- Está equivocado –replicó irritado el viejo Salim-. Por mis cálculos son 28. vea usted: si por 100 debía pagar 20, por 140 debo recibir 28.
Proporción que planteó el dueño de la hospedería:
100 : 20 = 140 : x
El valor de x es 28
100 : 20 = 140 : x
El valor de x es 28
- Calma, mis amigos –interrumpió el calculista- es preciso encarar las dudas con serenidad y bondad. La precipitación conduce al error y a la discordia. Los resultados que los señores indican están equivocados, según voy a demostrarlo:
Y aclaró el caso del siguiente modo:
- De acuerdo con la combinación hecha, el sirio pagaría 20 dracmas si vendiese las joyas por 100, y se vería obligado a pagar 35 si las vendiese en 200.
Tenemos así:
Precio de venta Precio hospedaje
200 35
100 20
Diferencia: 100 15
200 35
100 20
Diferencia: 100 15
Observen que a una diferencia de 100 en el precio de venta, corresponde una diferencia de 15 en el precio del hospedaje. ¿Está claro esto?
- Claro como leche de camello –asintieron ambos.
- Ahora –prosiguió el calculista-, si un acrecentamiento de 100 en la venta produce un aumento de 15 en el hospedaje, un acrecentamiento de 40 (que es los dos quintos de 100) debe producir un aumento de 6 (que es los dos quintos de 15) a favor del posadero. El pago que corresponde a los 140 dracmas es, pues, 20 más 6, o sea, 26.
Proporción que planteó el calculista:
200 : 15 = 40 : x
El valor de x es 6
200 : 15 = 40 : x
El valor de x es 6
- Mi amigo. Los números, a pesar de su simplicidad aparente, no es raro que engañen, aun al más capaz. Las proporciones, que nos parecen perfectas, nos conducen, a veces, a error. De la incertidumbre de los cálculos es que resulta indiscutible el prestigio de la Matemática. De los términos del problema resulta que el señor deberá pagar a hotelero 26 dracmas y no 24 y medio, como al principio sostenía. Hay todavía una pequeña diferencia que no merece ser considerada y cuya magnitud no puedo expresar numéricamente, por carecer de recursos.
- El señor tiene razón –asintió el joyero-. Reconozco que mi cálculo estaba equivocado.
Y sin dudar, sacó de su bolsa 26 dracmas y los entregó al viejo Salim, ofreciendo como
presente al talentoso Beremís un hermoso anillo de oro con dos piedras oscuras, acompañando el obsequio con expresiones afectuosas.
Todos los que se hallaban en la posada admiraron la sagacidad del nuevo calculista, cuya fama, día a día, ganaría a grandes pasos la “almenara”5 del triunfo. Momentos después, cuando nos encontrábamos a solas, interrogué a Beremís sobre el sentido exacto de una de sus afirmaciones: “De la incertidumbre de los cálculos es que resulta indiscutible el prestigio de la Matemática”.
El “Hombre que calculaba” me aclaró el concepto:
- Si los cálculos no estuvieran sujetos a dudas y contradicciones, la Matemática sería, al final, de una simplicidad insípida, tibia, apagada, sin interés alguno. No habría raciocinio, ni sofismas, ni artificios; la teoría más interesante desaparecería entre las nebulosidades de las nociones inútiles. Presentándose, sin embargo, aún en las fórmulas más perfectas y rígidas, las dudas, incertidumbres y contradicciones, el matemático toma del carcaj de su inteligencia, sus armas y se apresta a combatir. Donde el ignorante ve incertidumbre y contradicciones, el geómetra demuestra que existe firmeza y armonía. El rey Artajerjes preguntó, cierta vez, a Hipócrates de Cos, médico famoso, como debía proceder para combatir de modo eficiente las epidemias que diezmaban al ejército persa. Hipócrates respondió: “Obligad a todo vuestro cuerpo médico a estudiar Aritmética. Al practicar el estudio de los números y las figuras, los doctores aprenderán a razonar, desenvolviendo sus facultades de inteligencia, y aquel que razona con eficacia es capaz de hallar los medios seguros para combatir cualquier epidemia.”
CAPÍTULO VI
En el cual vamos al palacio del visir Maluf. Encontramos al poeta Iezid, que no
reconoce los prodigios del cálculo. “El hombre que calculaba” cuenta, en
forma original, una caravana numerosa. La edad de la novia y un camello sin
oreja. Beremís descubre la “amistad cuadrática” y habla del rey Salomón.
reconoce los prodigios del cálculo. “El hombre que calculaba” cuenta, en
forma original, una caravana numerosa. La edad de la novia y un camello sin
oreja. Beremís descubre la “amistad cuadrática” y habla del rey Salomón.
Después de la segunda oración1, salimos de la posada y nos dirigimos hacia la residencia del visir Ibraim Maluf. Al entrar en la hermosa morada del visir, el calculista quedó encantado. Era una casa principesca, de puro estilo árabe, con un pequeño jardín sombreado por filas paralelas de naranjos y limoneros. Del jardín se pasaba a un patio interior por una estrecha puerta y un corredor que tenía apenas el ancho de un hombre normal. En el fondo del patio erguíanse doce columnas blancas, unidas por otros tantos arcos en forma de herradura, que sostenían, a la altura del primer piso, una galería con baranda de madera. El piso del patio, de la galería y de las habitaciones estaba embaldosado con espléndidos mosaicos de cuadritos esmaltados, de variados colores; los arcos lucían arabescos y pinturas sugestivas; la balaustrada tenía labrados de motivos delicados; todo estaba diseñado con una armonía y una gracia digna de los arquitectos de la Alhambra.
Había en el medio del patio una fuente y, más adelante, otra, revestidas de mosaico con rosas y estrellas y en ella tres surtidores. Del medio de cada arco colgaba una lámpara morisca. Todo era allí, fastuoso y señorial. Una de las alas del edificio, que se extendía a lo largo del jardín, tenía también un frente formado por tres arcos, ante los que susurraba una tercera fuente. En las salas principales, ricos tapices de oro lucían, suspendidos de las paredes.
Ante el gran ministro nos condujo un esclavo negro. Lo encontramos reclinado en grandes almohadones, hablando con dos de sus amigos.
Uno de ellos era el sheik Salem Nasair, nuestro compañero de aventuras en el desierto; el otro era un hombre bajo, de fisonomía bondadosa, de rostro redondo y barba ligeramente grisácea. Vestía con esmerado gusto y lucía en el pecho, una medalla de oro de forma rectangular, que tenía una cara del color del oro y otra obscura como bronce.
Nos recibió el visir Maluf con demostraciones de viva simpatía, y dirigiéndose al hombre de la medalla, le dijo sonriente:
- Aquí está, caro Iezid, nuestro gran matemático. El joven que lo acompaña es un “bagdalí” que lo descubrió por casualidad cuando viajaba por los caminos de Alah.
Dirigimos un respetuoso “zalam” al noble jefe. Más tarde supimos que se trataba de un poeta brillante –Iezid Abul -Hamid-, amigo y confidente del califa Al-Motacen. La singular medalla la había recibido de sus manos como premio, por haber escrito un poema de treinta mil doscientos versos sin emplear una sola vez, las letras “kaf”, “lam” y “ayu”2.
- Amigo Maluf –dijo el poeta Iezid-, cuéstame creer las hazañas prodigiosas llevadas a cabo por este calculista persa. Cuando se combinan los números, aparecen, también, los artificios del cálculo y las mistificaciones algebraicas. Presentóse cierta vez un mago, que afirmaba poder leer el destino de los hombres en la arena, al rey El-Harit, hijo de Modad. –“¿Hace usted cálculos?”, le preguntó el rey. Y antes de que el mago saliese de su asombro, continuó: “Si no hace cálculos, sus predicciones nada valen; mas si las obtiene por los cálculos, dudo de ellas.” Aprendí en la India un proverbio que dice: “Es preciso desconfiar siete veces del cálculo y cien del calculista.”
- Para poner fina a esas de desconfianzas –sugirió el visir- vamos a someter a nuestro huésped a una prueba decisiva. Y diciendo así se levantó de los almohadones y nos condujo a una de las ventanas del palacio.
Daba esa ventana para un gran patio que, en ese momento, estaba lleno de camellos. Eran todos muy hermosos, pareciendo de buena raza; distinguí entre ellos dos o tres blancos, de Mongolia, y varios “carehs”, de pelo claro.
- Es esa –dijo el visir- una hermosa partida de camellos que he comprado y que pienso enviar como dote al padre de mi novia. Di, sin error, cuántos son. El visir, para hacer más interesante la prueba, dijo en secreto a su amigo Iezid, el número total de animales.
Quiero ahora –prosiguió, volviéndose a Beremís- que nuestro calculista nos diga cuántos camellos hay en el patio, delante de nosotros.
Esperé aprensivo el resultado. Los camellos eran muchos y se confundían en medio de la agitación en que se hallaban. Si mi amigo, en un descuido, errase el cálculo, terminaría nuestra visita, en consecuencia, con el más grande de los fracasos.
Después de dar un vistazo a todos los camellos, el inteligente Beremís dijo:
- Señor visir: creo que se encuentran ahora en el patio, 257 camellos.
- Es verdad –confirmó el visir-: ha acertado. El total es ese, precisamente: 257.
- ¿Cómo llegó al resultado con tanta rapidez y precisión? –preguntó con grandísima curiosidad el poeta Iezid.
- Muy simplemente –explicó Beremís-. Contar los camellos uno por uno, sería, a mi modo de ver, tarea sin importancia, una bagatela. Para hacer más interesante el problema, procedí de la siguiente manera: conté primero todas las patas y después todas las orejas, hallando de ese modo un total de 1.541. A ese resultado sumé una unidad y dividí por 6. Hecha esa división, hallé como cociente exacto, 257.
- ¡Por el nombre del profeta! –exclamó el visir-. Todo esto es originalísimo, admirable. ¡Quién iba a imaginar que este calculista, para hacer más interesante el problema, fuese capaz de contar todas las patas y orejas de 257 camellos! ¡Por la gloria de Mahoma!
- Debo decir, señor ministro –retrucó Beremís-, que los cálculos se vuelven a veces complicados y difíciles como consecuencia de un descuido o de la falta de habilidad del propio calculista. Cierta vez en Khói, en Persia, cuando vigilaba el rebaño de mi amo, pasó por el cielo una bandada de mariposas. “Preguntóme, a mi lado, un pastor, si podía contarlas.” “Son ochocientas cincuenta y seis” –respondí. “¡Ochocientas cincuenta y seis!” respondió mi compañero, como si hubiese exagerado el total. –Fue entonces que noté que por descuido había contado, no las mariposas, sino sus alas. Después de dividir por 2, le dije el resultado verdadero.
Al oír el relato de ese caso, lanzó el visir estrepitosa carcajada, que sonó en mis oídos como si fuera una música deliciosa.
- Hay, sin embargo –insistió muy serio el poeta Iezid- una particularidad que escapa a mi raciocinio. Dividir por 6 es aceptable, ya que cada camello tiene 4 patas y 2 orejas, cuya suma (4+2) es igual a 63. No obstante, no comprendo por qué razón antes de dividir sumó una unidad al total.
- Nada más simple –respondió Beremís-. Al contar las orejas noté que uno de los camellos era defectuoso (sólo tenía una oreja). Para que la cuenta fuese exacta era, pues, necesario aumentar uno al total obtenido.
Y volviéndose hacia el visir, preguntó:
- ¿Sería indiscreción o imprudencia de mi parte preguntaros, señor, cuál es la edad de aquella que tiene la ventura de ser vuestra novia?
- De ningún modo –respondió sonriente el ministro-. Asir tiene 16 años. Y añadió, subrayando las palabras con un ligero tono de desconfianza:
- Pero no veo relación alguna, señor calculista, entre la edad de mi novia y los camellos que voy a ofrecer como presente a mi futuro suegro.
- Deseo apenas –refutó Beremís- haceros una pequeña sugestión. Si retiraseis del conjunto, el camello defectuoso (sin oreja), el total sería 256. Ahora bien: 256 es el cuadrado de 16, o sea, 16 veces 16. El presente ofrecido al padre de la encantadora Asir tomará, de ese modo, alto significado matemático. El número de camellos que forman la dote será igual al cuadrado de la edad de la novia. Además el número 256 es potencia exacta del número 2 (que para los antiguos era número simbólico), mientras que 257 es primo4. Esas relaciones entre los números cuadrados son buen augurio para los enamorados. Cuéntase que el rey Salomón, para asegurar la base de su felicidad, dio a la reina de Saba –la famosa Balkisuna caja con 259 perlas. Es precisamente 259 el cuadrado de 23, que era la edad de la reina. El número 256 presenta, no obstante, gran ventaja sobre el 259. Si sumamos los guarismos de 256 obtenemos 13, que elevado al cuadrado da 169; la suma de las cifras de ese número es 16, cuyo cuadrado nos reproduce precisamente, 256. Por ese motivo los calculistas llaman reversible al número 256. Existe, pues, entre los números 13 y 16 curiosa relación, que podría ser llamada “amistad cuadrática”. Realmente, si los números hablasen podríamos oír la siguiente conversación: El dieciséis diría al trece:
“Quiero ofrecerte mi homenaje, amigo. Mi cuadrado es 256, cuya suma de guarismos es 13.”
Y el trece respondería:
“Agradezco tu bondad y quiero retribuirla en la misma forma. Mi cuadrado es 169, cuya suma de guarismos es 16.”
El calculista agregó:
- Creo haber justificado plenamente la preferencia que debe ser otorgada al número 256, que excede en propiedades al 257.
- Su idea es bastante curiosa – acordó prontamente el visir- y voy a adoptarla, aunque caiga sobre mi la acusación de plagiario, del rey Salomón.
Y dirigiéndose al poeta Iezid, concluyó:
- Veo que la inteligencia de este calculista no es menos que su habilidad para descubrir analogías e inventar leyendas. Estuve muy acertado en el momento en que decidí ofrecerle ser mi secretario.
- Siento decirle, ilustre mirza5 –replicó Beremís- que sólo podría aceptar vuestra honrosa invitación si aquí hubiera lugar para mi buen amigo Hank-Tad-Madya –el “bagdalí”-, que se encuentra en estos momentos sin recursos y sin empleo.
Quedé encantado con la delicadeza del calculista, que procuraba, de esa manera, atraer sobre mí la valiosa protección del poderoso visir.
- Es muy justo su pedido –dijo condescendientemente el ministro-, y su compañero Hank- Tad-Madya se quedará también aquí, ejerciendo las funciones de escribiente, como ya lo he ordenado.
Acepté, sin dudar, la propuesta, expresando después al visir y también al bondadoso Beremís mi reconocimiento
UNIDAD 1; CONCEPTOS INICIALES Y PROPOSICIONES
I SESION
UNIDAD No. 1
INTRODUCCIÓN, GENERALIDADES Y CONCEPTOS BÁSICOS
UNIDAD Nº 1INTRODUCCIÓN, GENERALIDADES Y CONCEPTOS BÁSICOS
ARGUMENTOS PARA UNA BUENA DEFINICION
En la mayoría de los casos hemos aprendido que cuando tenemos que definir un término, resultamos dando tan solo un concepto, es decir una pequeña noción o la mínima parte de una verdadera definición.
Una verdadera definición debe ser concisa, fácil de entender y lo más simplificada posible pero sin abandonar ninguna de las características que la convierten en una verdadera definición.
A la hora de definir correctamente en nuestro cerebro se deben procesar las 3 respuestas a los siguientes interrogantes:
· ¿Qué es?
· ¿De qué se forma?
· ¿Para qué sirve?
Para que el ejercicio sea simple, a la hora de encontrar la respuesta trataremos de hacerlo con una sola palabra, si es necesario dos palabras y a lo sumo tres palabras; y al finalizar uniremos estas tres respuestas para obtener una verdadera definición.
RECOMENDACIONES
- Al interrogante: ¿Qué es? Evitemos dar como respuesta es aquel, es aquella, es algo o es lo que. Estas frases no poseen un verdadero significado.
- Al interrogante: ¿De qué se forma? ¿Para qué sirve? Se debe responder lo más sintetizado posible, claro está sin omitir los detalles de importancia o relevancia.
EJEMPLO
Tomemos como ejemplo inicial la definición de lo que es un computador, así:
Interrogante Respuesta
· ¿Qué es? Máquina
· ¿De qué se forma? Hardware y Software
· ¿Para qué sirve? Multipropósito o multitarea
En resumen al procesar esto en nuestro cerebro nuestra respuesta correcta debería ser:
Un computador es una máquina de origen electrónico formada por 2 elementos fundamentales que son el hardware y el software y que es utilizada hoy en día para múltiples propósitos o tareas.
Al finalizar la definición usted puede adicionar ciertos detalles adicionales que le parezcan relevantes. Por ejemplo:
· Que el hardware hace referencia a la parte física del computador y el software hace referencia a la parte lógica (programas e información)
· Que un computador está diseñado para 4 tareas fundamentales que son:
1.Almacenar, administrar y gestionar grandes cantidades de información
2.Realizar todo tipo de cálculos matemáticos y estadísticos de forma eficaz y eficiente.
3.Mantenernos constantemente informados y comunicado
4.Realizar todo tipo de tareas periódicas o repetitivas.
DEFINICIÓN DE LÓGICA MATEMÁTICA
La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos
de razonamiento. En un nivel elemental, la Lógica proporciona reglas y técnicas para determinar si es o
no valido un argumento dado. El razonamiento lógico se emplea en Matemáticas para demostrar
teoremas, sin embargo, se usa en forma constante para realizar cualquier actividad en la vida.
DEFINICION DE MATEMATICAS
DEFINICION DE MATEMATICAS
Las matemáticas o la matemática es una ciencia que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones cuantitativas entre entes abstractos (números, figuras geométricas, símbolos). Mediante las matemáticas conocemos las cantidades, las estructuras, el espacio y los cambios.
Las matemáticas son una disciplina académica que estudia conceptos como la cantidad, el espacio, la estructura y el cambio.
UNIDAD Nº 2
PROPOSICIONES
Proposiciones
La lógica es toda una disciplina en la que las reflexiones y el razonamiento son fundamentales. El elemento básico sobre el que se desarrolla toda esta teoría se llama proposición.
De todo lo anterior podemos deducir que una proposición es una
afirmación con sentido completo de la cual se puede a
firmar que es cierta o que es falsa.
Ejemplo 1.
1. La sal es un compuesto químico
2. 10 < 14
3. 13 es un número impar
4. El sol sale de noche
5. 45 + 5 = 30
6. ¿De que color es la pared?
Las
afirmaciones 1, 2, 3, 4 y 5. son proposiciones aunque no todas son verdaderas siguen siendo proposiciones.
A esta propiedad de las proposiciones de ser verdadera o falsa se le llama valor de verdad.
Las proposiciones se representan con letras minúsculas, usualmente p, q, r, s, t,..
Existen casos donde el sujeto del que se habla en la proposición no está de
nido o no se conoce, por lo que tiene una incógnita. A estos casos les llamamos frases proposicionales. (Suele llamarles proposiciones abiertas)
1. x + 12 = 20
2. Alguien es un ingeniero famoso
3. Mi nombre es "fulano de tal"
4. Tengo x dinero en el banco
Clases de proposiciones
1. Proposiciones simples o atómicas: Son aquellas que no se pueden fragmentar en proposiciones menores.
La luna es un satélite natural
Los dígitos son nueve
4 es un número par
Todos los números impares son primos
Los pingüinos son aves
2. Proposiciones compuestas o moleculares: Las proposiciones simples se pueden conectar, y construir proposiciones llamadas compuestas. Ésta operación puede hacer que cambie su valor de verdad.
"Las rosas son rojas y las violetas azules" es un enunciado compuesto por los subenunciados "las rosas son rojas" "las violetas son azules".
"El es inteligente o estudia todas las noches" es, implícitamente, un enunciado compuesto por los subenunciados "El es inteligente" "estudia todas las noches".
La propiedad fundamental de un enunciado compuesto es que su valor de verdad está completamente determinado por los valores de verdad de sus subenunciados junto con la manera como están conectados para formar el enunciado compuesto. Comenzamos con un estudio de algunas de estos conectivos.
Utilizaremos las letras p; q; r (en minúsculas) para denotar proposiciones.
Además una proposición puede tomar el valor de 1 si es verdadera, 0 si es falsa, esto también se espera que ocurra en las proposiciones compuestas, por esto es necesario una tabla que de la oportunidad de veri
ficar todas las posibles combinaciones, la llamaremos Tablas de verdad.
Proposiciones conjuntivas, p ^ q
Dos enunciados cualesquiera se pueden combinar con la palabra Y (^) para formar un enunciado compuesto llamado la conjunción de los enunciados originales. Simbólicamente, p ^ q denota la conjunción de los enunciados p y q, que se lee "p y q".
el valor de esta proposición conjuntiva dependerá de que las dos proposiciones que la conforman sean verdaderas
1. p : El dos es un número par (V)
2. q : Siete es un número primo (V)
3. r : El ocho es un número primo (F)
así que :
p ^ q : El dos es un número par y siete es un número primo (V)
En caso de que una de las dos sea falsa entonces toda la proposición conjuntiva lo será.
r ^ q : El ocho es un número primo y siete es un número primo (F)
La tabla de verdad del enunciado compuesto p ^ q está dada por la siguiente tabla:
p q p ^ q
V V V
V F F
F V F
F F F
Para ilustrarlo: en una tubería de acueducto se han colocado 2 grifos numerados p y q respectivamente si se abre p escribimos 1, si la cerramos escribimos 0. la única forma en que salga agua es p = 1 y q = 1 en cualquier otro caso no saldrá agua.
Proposiciones disyuntivas, p v q
Dos enunciados se combinan con la palabra "O" para formar un enunciado compuesto llamado la disyunción de los enunciados originales. Simbólicamente, p Proposiciones disyuntivas, p v q
El valor de esta proposición conjuntiva dependerá de que las dos proposiciones que la conforman sean no sean falsas.
La tabla de verdad del enunciado compuesto p V q está dada por la siguiente tabla:
p q p _ q
V V V
V F V
F V V
F F F
En este caso la única manera en que no salga agua es que ambos grifos estén cerrados.
Proposiciones condicionales, p ---> q
Cuando se unen dos proposiciones con el conectivo entonces, se forma una proposición que solo es falsa si las primera es verdadera y la segunda es falsa (solo en este orden).
Ejemplo 2.
Sea p : El canguro es marsupial ( V )
q : America es habitat de todos los marsupiales ( F )
El canguro es marsupial entonces América es habitat de todos los marsupiales. en forma simbólica
p q p ---> q
V F F
En las proposiciones condicionales llamamos a la primera proposición que la compone antecedente y a la segunda consecuente. Cuando el antecedente tiene una relación directa con el consecuente podemos utilizar el símbolo de la implicación --->
La suma de dos números naturales es un número natural esto implica que 2+3 es número natural.
La tabla de verdad de la proposición compuesta p ! q está dada por la siguiente tabla:
p q p --> q
V V V
V F F
F V V
F F V
Ahora el grifo p tiene un problema, se encuentra mal y cuando alguien la abre esta se cierra, cuando alguien la cierra esta se abre, por eso la única forma en que no salga agua es que se abra p (en realidad se cierra) y se cierre q.
Proposiciones bicondicionales, p <--> q
Cuando se unen dos proposiciones con el conectivo si y solo si, se forma una proposición que solo es falsa si las dos tienen valores de verdad diferentes.
Ejemplo 3.
Sea p : todo número impar es primo ( F )
q : 9 es menor que 6 ( F )
Todo número impar es primo si y solo si 9 es menor que 6, es como decir:
Todo número impar es primo única y exclusivamente si 9 es menor que 6
Como ambas proposiciones son falsas se cumple la afirmación compuesta
La tabla de verdad del enunciado compuesto p <--> q está dada por la siguiente tabla:
p q p <--> q
V V V
V F F
F V F
F 0 V
La proposición bicondicional p <---> q es equivalente por su tabla de verdad a (p ---> q) ^ (q ---> p)
Proposiciones negativas: -p
Aunque no es un conectivo lógico (como v;^; ---> ,<--->) genera nuevas proposiciones con solo cambiarle el valor de verdad y se simboliza anteponiendo a la letra de la proposición:
Ejemplos:
p : todo número impar es primo
-p : no todo número impar es primo
q : 9 es menor que 6
-q : 9 no es menor que 6
La tabla de verdad de la negación de p : -p está dada por la siguiente tabla:
p -p
V F
F V
La suma de dos números naturales es un número natural esto implica que 2+3 es número natural.
La tabla de verdad de la proposición compuesta p ! q está dada por la siguiente tabla:
p q p --> q
V V V
V F F
F V V
F F V
Ahora el grifo p tiene un problema, se encuentra mal y cuando alguien la abre esta se cierra, cuando alguien la cierra esta se abre, por eso la única forma en que no salga agua es que se abra p (en realidad se cierra) y se cierre q.
Proposiciones bicondicionales, p <--> q
Cuando se unen dos proposiciones con el conectivo si y solo si, se forma una proposición que solo es falsa si las dos tienen valores de verdad diferentes.
Ejemplo 3.
Sea p : todo número impar es primo ( F )
q : 9 es menor que 6 ( F )
Todo número impar es primo si y solo si 9 es menor que 6, es como decir:
Todo número impar es primo única y exclusivamente si 9 es menor que 6
Como ambas proposiciones son falsas se cumple la afirmación compuesta
La tabla de verdad del enunciado compuesto p <--> q está dada por la siguiente tabla:
p q p <--> q
V V V
V F F
F V F
F 0 V
La proposición bicondicional p <---> q es equivalente por su tabla de verdad a (p ---> q) ^ (q ---> p)
Proposiciones negativas: -p
Aunque no es un conectivo lógico (como v;^; ---> ,<--->) genera nuevas proposiciones con solo cambiarle el valor de verdad y se simboliza anteponiendo a la letra de la proposición:
Ejemplos:
p : todo número impar es primo
-p : no todo número impar es primo
q : 9 es menor que 6
-q : 9 no es menor que 6
La tabla de verdad de la negación de p : -p está dada por la siguiente tabla:
p -p
V F
F V
Suscribirse a:
Entradas (Atom)